
Conceptual Physics I Classical Mechanics

Lesson 1B – Linear Motion with Constant Acceleration (free fall)

- If gravity is the only thing affecting a falling object, we say the object is in "free fall."
- This could apply to:

An object being dropped An object thrown upward An object thrown downward

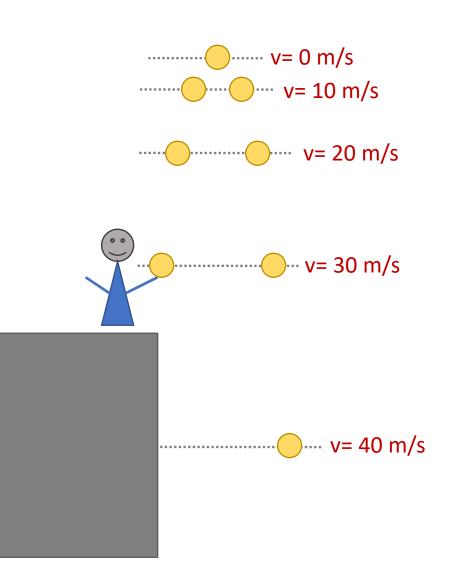
- Gravity provides a constant acceleration, always in the "downward" direction.
- The constant acceleration of gravity is denoted as g and is approximately equal to 10 meters/sec per second. This means that gravity is changing the speed of a freely-falling object in the downward direction 10 meters/sec for each second elapsed.

Example: A ball dropped off a building (g=10 m/s per second)

Speed (m/s)
0
10
20
30
40
50
60
70

How do you calculate how far something has fallen during free fall?

Case I – Object is Dropped


- The distance traveled turns out to equal the average speed times the time. $v_{avg}t$
- In this case, the average speed during an interval is the beginning speed plus the ending speed divided by 2 (like the usual meaning of average) $v_{avg} = \frac{v_{beg} + v_{end}}{2}$. Since v_{beg} =0 for dropped objects, then

$$v_{avg} = \frac{v_{end}}{2} = \frac{gt}{2}$$

• The easy way to calculate the distance is $\frac{1}{2}gt^2 = 5t^2$

Time (s)	Speed (m/s)	Time squared	Distance traveled (m)
0	0	0	0
1	10	1	5
2	20	4	4x5=20
3	30	9	9x5=45
4 5	40	16	16x5=80
	50	25	25x5=125
6	60	36	36x5=180
7	70	49	49x5=245

Extra Problem 1

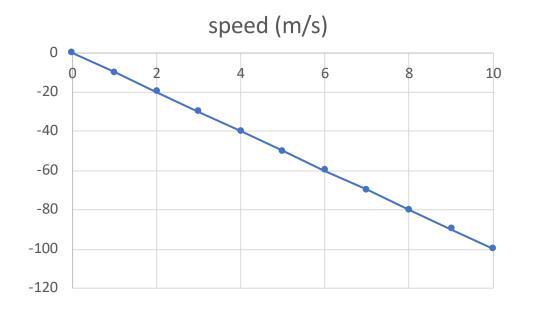
Case II – Object is Thrown Upwards

- Now the object has an initial speed.
- It will travel higher before turning around.
- The distance it travels has two components:
- 1) the distance it would have traveled based on its initial velocity and without acceleration
- 2) The distance based on acceleration

Distance = initial velocity x time +
$$\frac{1}{2}gt^2$$

Init vel x time 5 x time²

····· v= 0 m/s	
\sim 10 m/s	


Time Speed **Distance from** Position Distance **(s)** (m/s) (m) from initial acceleration velocity (m) (m) 0 30 0 0 0 20 30 5 30-5=25 1 60-20=40 2 10 60 4x5=20 90 9x5=45 90-45=45 3 0 16x5=80 4 10 120 120-80=40 20 25x5=125 5 150 150-125=25 6 30 180 36x5=180 180-180=0 7 40 210 49x5=245 210-245=-35

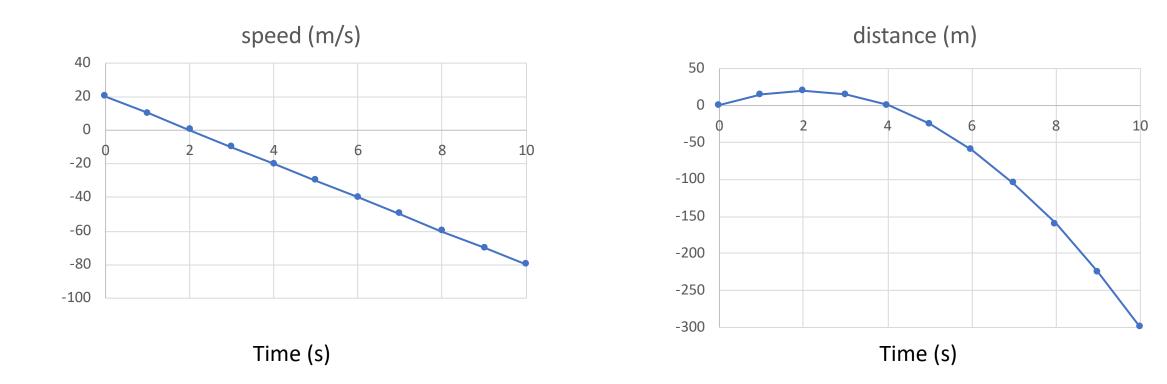
····· v= 40 m/s


- Case III Object is Thrown Downward
- The distance traveled is calculated much like the case of the object thrown upward
 - The distance contributions are added instead of subtracted

Time (s)	Speed (m/s)	Distance from initial velocity (m)	Distance from acceleration (m)	Position (m)
0	30	0	0	0
1	40	30	5	30+5=35
2	50	60	4x5=20	60+20=80
3	60	90	9x5=45	90+45=135
4	70	120	16x5=80	120+80=200
5	80	150	25x5=125	150+125=275
6	90	180	36x5=180	180+180=360
7	100	210	49x5=245	210+245=455

Lesson 1B - Free Fall from Rest

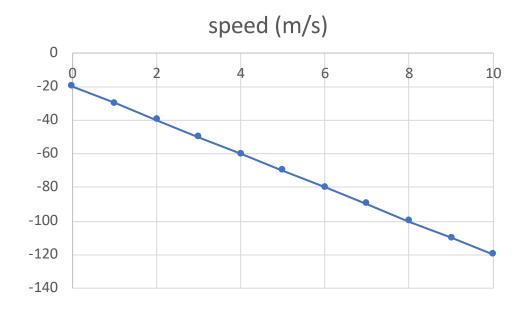
Time (s)

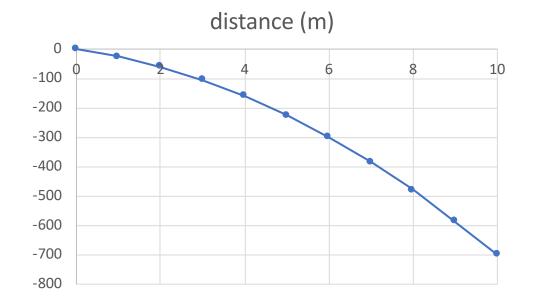


Time (s)

Straight line (constant slope)

Parabola (increasing slope)


Lesson 1B – Throwing Object Upwards at 20 m/s



Parabola (increasing slope)

Lesson 1B – Throwing Object Downwards at 20 m/s

Time (s)

Time (s)

Straight line (constant slope)

Parabola (increasing slope)

Questions:

- 1) What is the meaning of free fall? The only influence on the motion is gravity (neglecting air resistance).
- 2) For a freely falling object dropped from rest, what is the instantaneous speed at the end of the fifth second of fall? 50 m/s What is its acceleration? 10 m/s-s downward
- 3) Toss a ball upward. What is the change in speed each second on the way up? Decreasing by 10 m/s each second. On the way down? Increasing by 10 m/s each second.
- 4) A ball is thrown straight up. What will be the instantaneous velocity at the top of its path? Zero. What will be the acceleration at the top? 10 m/s-s downward

Questions:

5) What speed is required to throw a ball straight up and have it return 6 seconds later? 30 m/s. How high does it go? It's the same distance it drops from the top of its path to your hand. $5x(3)^2 = 45$ meters.